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2. Artificialintelligence and protected cultivation

Greenhouse production processes are already highlyautomated and controlled but,similar to what
isoccurringin many sectors, Alsystemsare now taking control to unprecedented levels. Because of
their potential ability to process large amounts of data and make tiny continuous adjustments, Al
systems are beginning to provide greenhouse operators with myriads of production-related
benefits (Treena Hein, 2021)

Al in protected horticulture can predict yield, ensure product quality from starting material to
harvest, help decide on the planning of time-to-marketand resourcesused and improve efficiency.
It can, therefore, contribute to the economic profit of growers and the sustainability of their
production. Both are important factors in industrialised production processes with large
greenhouse compartments at different locations, a lack of skilled labour and increased demand for
high-value food close to urban areas. In addition, the link between growing conditionsand shelf-life
processes needs to be elaborated, such that information from the end point (the consumer
acceptance)is used as feedback to alter growing conditions.

2.1. Plant phenotyping of horticultural crops and the use of crop
sensors

Plant phenotyping canbe defined asthe set of methodologiesand protocols usedto measure plant
growth, architecture and composition with a certain accuracy and precision at different scales of
organisation, from plant organs to complete crop canopies. The term s often restricted to plant
breeding purposes, but it can also be used for plant production,specifically where measured plant
features are used for precise cropmaintenance and cropcontrolin a controlled environment, such
as (autonomous) greenhousesand vertical farms.

2.1.1. Digitalisation and artificial intelligence for crop morphology
measurements

The shape and morphology of plants is related to variety, the underlying genetics and
environmental factors (light, temperature,irrigation). Digital plant phenotypingrefers to the use of
computers for plant phenotyping wheredigital sensors areused to measure plant characteristics.

One of the most common digital phenotypingmethodologies is image analysis, where cameras are
used to record images and software is used to automatically extract the measurements from the
images to access plant morphology (the shape of a plant),in a reproducible and accurate way (Van
der Heijden & Polder, 2015).

Currently, many different typesof cameras are available for measuring important plant features to
characterise plant morphology. The most used camera is the RGB colour camera, which produces
images in thevisible spectrum, mimicking the human eye. To relate theimages to real dimensions,
3D information is often needed, which resulted in RGB camera-based 3D sensors. The Intel Real-
sense RGBD sensoris an affordable example of a RGB 3D sensor and is often used in horticultural
phenotyping, e.g., fortomatofruit detection and counting (Afonso et al., 2020; Fonteijn et al., 2021).
Other examples are LiDARsensors. All of these mightbecome low costbecauseof the development
of smart phone camerasfor consumers.

In greenhouse crop production, the plants may be intertwined, andso they cannotbe easily imaged
from all sides. This leads to occlusion and hampers the possibility ofimaging importantplant traits
with a 3D camera. To overcome this problem, more advanced imaging solutions are needed. This
can either be achieved by a moving trolley system with a mounted camera, flying dronesinside the
greenhouseorarobotthatscans the plantwith a 3D camera from many viewpoints. Using artificial
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intelligence algorithms, the point clouds from different single viewpoints are converted into a
robust representation of the crop (Boogaard et al., 2020).

2.1.2. Digitalisation and artificial intelligence for crop physiology
performance

Next to plant morphology, plantphysiological processes are importantfor crop monitoring. In crop
production, photosynthesis in the leaves yields important biochemicals, such as sugars, starch,
chlorophyll and nutrients, that are transferred to the plant organs, flowers and fruits (Dieleman et
al., 2018a).

Therefore, measuring the efficiency of plant photosynthesis directly and non-destructively is a
desirable way for obtaining information on crop performance and for the early detection of
deviations from optimal physiological conditions. Technologies like chlorophyll fluorescence
imaging and thermalimaging arepromising, especially if they can be applied to other parts of crop
canopies, as well as individualleaves.

The chemical composition of the cropcan be determined by sampling leaves or fruits, sending them
to a laboratory and waiting fortheanalysis.Recentimaging spectroscopy was tested ona laboratory
scale, to determine the composition of biochemicals in crops, with promising results (Dieleman et
al., 2018b).

Imaging spectroscopy is an imaging technique for images taken using many narrow wavelength
bands over a range extending across the visible spectrum (from ultraviolet to shortwave infrared)
and compared to a standard camera, which only records red, green and blue light. In doing so, it
creates an extremely detailed image of the reflection of light on plants or other objects. Imaging
spectroscopy provides a lot of information on plant pigments, sugars, proteins, fats and water, as
well as their distribution over theleavesor organs.

Regions ofinterest, suchas the fruits or leaves, can be automatically extracted fromthe image. This
opens the possibility of using this technique on mobile platforms (Mishra et al., 2020). Currently, a
lot of research and development effort is going into the development of spectral cameras, making
them less bulky, more robust, faster, and less costly.

Currently, Altechniques are exploredto extract usefulinformation from the massive amount of data
collected by the spectralcameras(Mishra et al., 2021; Signoroni et al., 2019).

These developments suggest an outlook for the future, providing more information on different
important plant features. Until now, most plant features could only be measured manually,
destructively and/or verylocally with scarce datapoints. Digitalisation of the measurementand use
of modern sensors and camera systems will help to collect more datapoints. Al methods will largely
help in the interpretation of variable data output. Al algorithms will also help to transform and
combinethe output of multiple sensorsinto usefulinformation for growers.

2.2. Autonomous growing and the use of Al

Greenhouse horticulture is characterised by relatively high operational efficiency involving powerful
managerial skills. However, demand for high vitamin and mineral food is increasing rapidly
(Rabobank, 2018; Tilman et al., 2011). The volatile market demands, resource prices, scarcity of
experienced labour (Brian, 2018), as wellas uncertain weatherand environmental conditions, make
greenhouse farming a complex and risky endeavour. While encountering an environmental crisis
(United Nations, 2019), food production systems need to become more productive, resource-
efficient, and environmentally sustainable (Willett et al., 2019). The development of advanced and
autonomous greenhouse production systems aims at realising the best possible production
outcomes, considering quality and sustainability targets, with the uncertainties of resource
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availability, weather or market demand. The realisation of fully autonomous and intelligent
horticulture entails three major components: remote sensing, remote control, and hands-free
practices with robotisation.

2.2.1. Data for autonomous growing and production

Data regarding greenhouse production systems are becoming of increasing importance and are a
means of deeper understanding and efficient management of the complex biological dynamic
processes. Large and meaningful datasets about all growing aspects are sparse. The greenhouse
climateis relatively well-monitored, resultingin a time series with short intervals. However,manual,
subjective, time-consuming, often invasive, and costly measurements of traits of crop growth,
development, pests, and pathogens result in fragmented weekly or bi-weekly data points
(Bouzembrak et al., 2020). This implies considerable data uncertainty as a result of noise, missing
data, inconsistent formats, and non-standard collection protocols, among others (Lezoche et al,
2020). Investmentinto integrating diverse and unstructured datais required before any additional
meaningfulinsights are possible (Osinga et al., 2022).

Ongoing technological developments, computational power, and high-fidelity sensors offer new
opportunitiesfor automated, remote, and non-invasive sensingof growing parameters. The higher
spatial and temporal resolutionin the measurements and in the growing conditions allows for
interpretation of the system's variability at coarser and granular levels and offers opportunities for
sufficient information extraction towards more efficient adaptation of horticultural practices.

Al and machine learning can deal with the larger datasets and capture the nonlinear relationships
presentin the heterogeneousdata sourcesin greenhouses.

2.2.2. Machine learning for yield prediction and resource use efficiency

Scalable and generic machine learning analytics are currently used to complement expert-based
approaches for supporting yield predictions. Implementations of intelligent algorithms focus on
predictions ofindoor climate, microclimate (Ali&Hassanein, 2020; Takiet al., 2016, 2018), yield and
quality aspects of vegetable crops and flowers (Alhnaity et al., 2020; Reissig et al., 2021; Xiao et al,
2021), as well as growth and development indicators. Descriptive and predictive models (Partial
Least Squares (PLS)) (Liet al., 2016), Support Vector Machines (SVMs) (Fandeletal.,2021; Yan et al,,
2010), Random Forests (RF) (Amir et al., 2021), Artificial Neural Networks (ANNs) (Ullah et al., 2020),
and k-nearest Neighbours (KNNs) have developed yield forecasting tools and decision support
systems (DSS) using predictors and outcomes from experience. In addition to ML, deep learning
(Long Short-Term Memory (LSTM)) (Alhnaity et al., n.d.; Ali & Hassanein, 2020; Moon et al., 2020),
Temporal Convolutional Networks (TCN) (Gong et al., 2021), and Multilayer Perceptron Neural
Networks (MLP-NN) (Petrakis et al., 2022) have also shown significant advantagesin processing
time-series data to yield higher precision and better performance than other machine learning
methods.

Reinforcement learning finds applications in selecting actions, based on continuous feedback, to
maximise the system's performance. Currentapplications are aimedat learning the bestoperational
decision for day-to-day climate optimisation, with fewer being aimed at irrigation controland crop
management planning. Experiments for greenhouse control at a distance, using state-of-the-art
artificial intelligence algorithms, yielded promising results in the cultivation of cucumbers
(Hemming et al., 2019) and cherry tomatoes (Hemming et al., 2020), compared to references of
experience-based manual growing. Different Al technologies have been shown to have the
potential to contribute to predictingyield, as well as increasingyield and productqualityand, at the
sametime, save resources suchas energy, water and nutrients.
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2.2.3. Deep learning for pest and pathogen management

In the future, the detection of plant pathogens and pests will become extremely important. Unless
it is known what a plant is suffering from, nothing can be done about it. The earlier pests and
pathogens areidentified, the easier it is to controlthem. Automated systemsare starting to play a
greater partinthis (Bauriegel et al.,, 2011; Polder et al., 2014; Rumpfetal.,2010).

Automaticdetection of pathogens in plants, as early as possible and withoutdamaging the plant, is
an approach that is gaining ever more attention in horticulture. In automatic detection, the basic
assumptionis that a diseased plantlooks different from a healthy one. For example, leaves can have
subtle colour differences, which are often invisible to the human eye but can be captured using
techniques such as spectral imaging. Spectral imaging, combined with deep learning techniques
(described in the previous section), has the potential to become a powerful tool in pathogen
detection in greenhousesand verticalfarms.

Pest detection is often challenging because pests and their eggs are often located underneath the
plant canopy and are, therefore, difficult to detect. They are often very smalland showa very local
distribution. Crops in general might sufferfrommultiple pestsat the same time. Therefore, notonly
high-resolution detection butalso local and organism specific detection is required. High-resolution
imaging, in combination with deep learning techniques might have the potential for precision
farmingin greenhouses and verticalfarms.

In both cases, large amounts of labelled images are required from different situations (locations,
seasons, crop varieties) to sufficiently train the deep learning algorithms. More smart training is
needed to overcomethelack of such real data and labelled images.

2.3.Digital twins and decision support for market-oriented
production

Today's high-tech greenhouses are equipped with different standard sensors for monitoring light,
temperature, humidity, and CO, and for actively controlling different actuators (e.g. lighting,
screening, heating, ventilation, cooling, CO, dosing, fogging, dehumidification, irrigation, and
fertiliser dosing) in order to control all growth factors important for crop production at every
moment. Today'sgrowers determine the climate, irrigation and crop managementstrategies based
on experience and define the setpoints for climate and irrigation control manually. Actuators then
operate based on the setpoints configured in a processing computer, while sensors give feedback
on measured data for the controlloop (Hemming et al., 2020).

The rapid pace of technological advancements, Al, cloud computing, and the uptake of the loT
produces anincreasing datastream at high spatialand temporal resolution, almostin real-time.

In smart horticulture, the greenhouse grower can monitor and control operations at a distance,
based onreal-time digitalinformationinstead of direct observationsand tasks on-site.

Large amounts of data can be leveraged for the design and implementation of advanced models,
known as digital twins. A digital twin is equivalent to real-life objects mirroring the behaviour and
states over its lifetime in a virtual space (C. Verdouw et al., 2021). As a digital representation of actual
physical systems and technology integrators, digital twins offer a solution for complex systems
analysis and can act as decision support tools (Pylianidis et al., 2021). Digital twins are increasingly
adoptedin the manufacturing, automotive, and energyindustries (Caputoet al., 2019; Kritzinger et
al., 2018; Sivalingam et al., 2018).
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2.3.1. Digital twin of the greenhouse system

Dynamicclimate models have been developed (Vanthoor etal., 2011) which act as digital twins of
realgreenhouses. An overview of today'sgreenhouseclimate modelswas given in a previous study
(Lépez-Cruz et al,, 2018). Since greenhouses differ from each other, an appropriate parameter
determination or calibration is necessary for each model, to act as a digital twin of an existing
greenhouse. These mechanistic digital twin models can be used to assist intelligent decision
support on climate control actions. Simulations of past or future scenarios provide information on
how different climate controlin the past could haveimproved crop production and which actions
arerequiredto reacha certain crop production goalin the future. These models can also be coupled
with intelligent algorithmsto automatically determine climate setpoints,an action that is currently
performed manually by the grower. In order to control crop production byan automatedalgorithm,
mechanisticgreenhouse climate and crop models are coupled to resemble areal greenhouse.The
effects of changing set points can be tested on the digital twin and then, sent automatically to a
processing computer to controlthe differentactuators (Hemming et al., 2020).

2.3.2. Digital twin of the crop

The crop has a central role in every greenhouse production system. Crop management decisions
and actions are mostly taken by the greenhouse staff. Since experienced and well-trained crop
managers are scarce, crop simulation models can play a role in decision making. An overview of
greenhouse cropmodels andmodelling approachesare given in otherstudies (Kuijpers et al., 2019;
Sarlikiotiet al., 2011). Crop models can be used as virtual representations of reality (Marshall-Colon
et al., 2017). They can be used to simulate different growing conditions and crop management
strategies and to predict theireffect on crop developmentandyield, as well as on fruit quality. Crop
models can help to understand the crop behaviour under different growing conditions and can
supportthe growerin making decisions. Additional sensors, monitoringcrop status, can provide the
grower with furtherinformation asdescribedin the previous chapter. While automated greenhouse
climate controlalgorithms have already been developed and are widely introduced in modern high-
tech greenhouses, automated control procedures for cropstatus arestillin theirinfancy (Hemming
etal., 2020).

The available digital twins do not yet include all aspects for crop production. Typically, water and
nutrient managementcould be described in more detail. Crop quality aspects are not described well
and pest and pathogenmanagement is lacking. More attention needsto be paid to the completion
of mechanisticdigital twins in future research.

2.3.3. Digital twins for decision support and Al

In general, complete digital twins (including greenhouse twins, the physical environment and crop
twins) can facilitate operational and tacticalmanagement decisions, strategic design decisions,and
predictive maintenance information. Preventive and corrective actions can be simulated and
evaluated in the digital environment before the final actual intervention. Such complete digital
twins are highly suitable for capturing available 'horticultural/green' knowledge and obtaining
artificial training datasetsfor future systemdesign and operation.

Convergence between digital and physical greenhouse production systems has been pursued asan
essential goal for data-driven horticulture. In the domain of process systems engineering,
Reinforcement Learning (RL) has been applied to resolve stochastic optimal control challenges with
the uncertainties of the highly non-linear and complexprocesses. As real-world datais augmented
in mechanistic algorithms that comprise the digital twin, the virtual environment can act as a
learning environment that generates adaptive control actions with statistical significance, instead
of the conventionalhardcoded control logics of deterministic conditions.
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Deep RL networks require finite learning iterations. To explore the potential of such data-greedy
networks for horticultural challengesin a practical, timely and economically feasible manner, data
from the digital twins can be used as it is repeatable, inexpensive, and clean. In view of conditional,
highly automated and high-fidelity twins, interventions suggested in the digital twin can be directly
implemented without the grower's inspection or physical proximity. The twins are able to self-
diagnose and adapt to users' preferences (C.N.Verdouw et al., 2016). The benefits can result in cost
savings of recourses, improved product quality, faster actions with lower risks, and increased
production (Pylianidis et al., 2021; C. Verdouw et al., 2021).
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